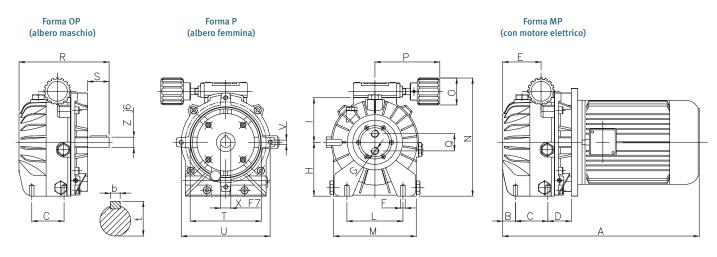
Po2-M10 0,37KW-5,5 KW

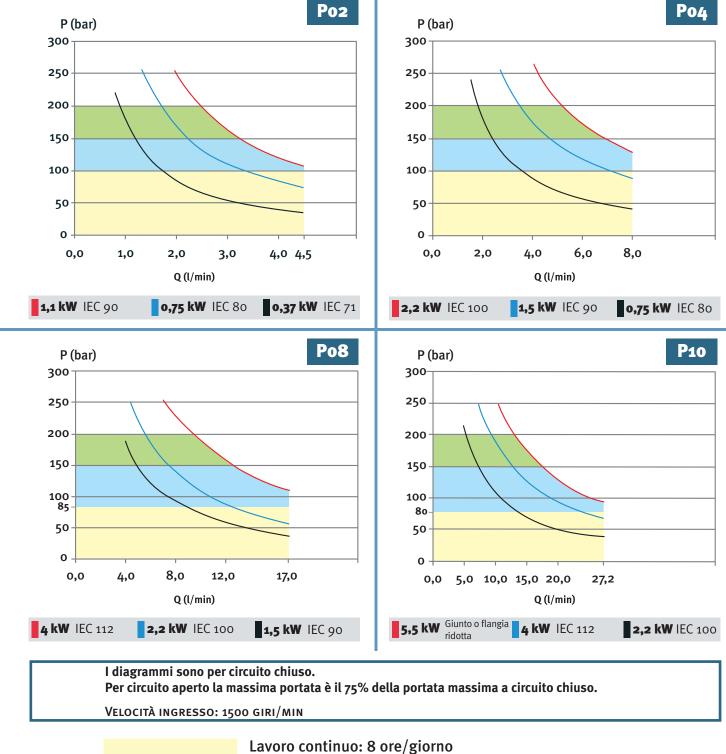
TRASMISSIONI IDROSTATICHE INTEGRATE



	TIPO			P02	Po4	Po8	P10		
Cilindrata massim	a	С	cm³/giro	3,3	5,9	12,3	19,9		
Portata max a 150	o giri/min *	Qnom	l/min	4,5	8,1	16,9	27,2		
D	continua	p nom	bar	100 **					
Pressione max	picco	p picco	bar	300 ***					
V-1:45 :	4 poli	Vnom	giri/min	1500					
Velocità ingresso	min-max	V min-max	giri/min	600÷2000					
Potenza ingresso *-*	1500 giri/min	Pnom	kW	1,1	2,2	4	5,5*-**		
Serbatoio interno (e	escluso circuito)	V	lit.	0,3	0,4	0,6	0,9		
Peso (comando vo	lantino)	W	Kg	6,5	9	13	25		
Temperatura mass	°C	80°C							
Viscosità ottimale		20-35 mm²/s [cSt] a 40°C							
Filtraggio		NAS 1638, lev 9 ISO/DIN 4406, lev 18/15							

- Valori per circuito chiuso; per circuito aperto considerare il 75% della portata
- Senza serbatoio aggiuntivo o scambiatore (in funzione anche della temperatura ambiente)
- 300 bar sono possibili a ca. 17% della portata; da utilizzare per brevi periodi (non superare 2% per minuto)
- Potenza richiesta in ingresso per avere portata e pressione nominali
- 5,5 kW con giunto o flangia ridotta del motore elettrico

Per circuiti aperti si consiglia capacità serbatoio 4-5 volte la portata di lavoro


DIMENSIONI POMPE

	Dimensioni pompe con motore flangia IEC (mm)																				
					[)				F	G										
	Α	В	С	IEC 71	IEC 8o	IEC 90	IEC 100/112	E	TAP	DEPTH	(GAS)	Н	'	L	M	N	0	Р	Q	R	S
Po2	329	23,4	54	37,5	99,5	99,5		67,4	M8	10	3/8	81	74	82	125	191,5	50	121	32	144,9	30
Po ₄	364	23,7	60		43	107	113	71,2	M10	18	3/8	100	83	104	150	219,5	50	121	32	166,7	40
Po8	432	23	75			52	122	83	M10	18	1/2	100	97,3	124	180	233,8	50	121	35	200	50
P10	506	35	78				68	91	M12	20	3/4	127	115	154	221	278,5	50	121	44	222	60
		1				ι	J			١	/)	(FLAN	IGIA
	IEC 71	IEC 80	IEC 90	IEC 100/112	IEC 71	IEC 8o	IEC 90	IEC 100/112	IEC 71	IEC 8o	IEC 90	IEC 100/112	IEC 71	IEC 80	IEC 90	IEC 100/112	Z	b	t	IE	
Po2	110	130	130		130	165	165		M6	M8	M8		14	19	24		14	5	16	71 - 8	0 - 90
Po ₄		130	130	180		165	165	215		M8	M8	M12		19	24	28	19	6	21,5	80 - 90 -	100/112
Po8			130	180			165	215			M8	M12			24	28	24	8	27	90 - 10	00/112
P10				180				215				M12				28	28	8	31	100	/112

DIAGRAMMI POMPE A CILINDRATA VARIABILE

POMPE

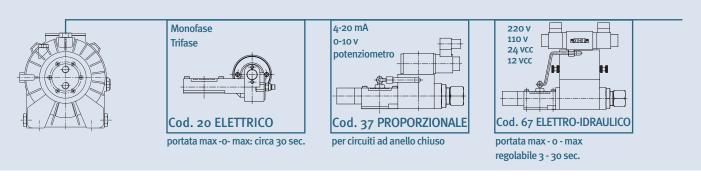
Lavoro intermittente: non superare il 50% per minuto Lavoro intermittente: non superare il 10% per minuto

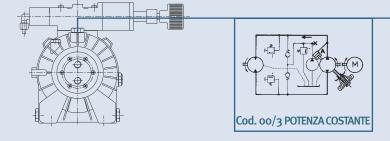
Pressione di picco: 300 bar, non superare il 2% per minuto

RENDIMENTO

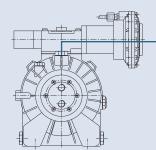
ŋ_{mec}=0,82-0,85 p=0-150 bar $\eta_{vol} = 0,95 - 0,99$ p=150-300 bar $\eta_{vol} = 0,93 - 0,95$ $\eta_{\text{mec}} = 0.85 - 0.9$

 η_{vol} = Rendimento volumetrico


 η_{mec} = Rendimento meccanico


CONTROLLO MANUALE

CONTROLLO A DISTANZA



CONTROLLO A POTENZA COSTANTE

Permette di ottenere in uscita una portata variabile in relazione alla coppia resistente (pressione olio). É un dispositivo per avvolgitori automatici: la velocità cala automaticamente in funzione dell'incremento del diametro della bobina e della corrispondente velocità periferica.

CONTROLLO PNEUMATICO

Segnale pneumatico 0,2÷1 bar Ideale per applicazioni in ambienti pericolosi, antideflagranti.

Cod. 52 PNEUMATICO

Dispositivi: Codice O quadrante indicatore; Codice D rotazione entrata bidirezionale.

POMPE

Codice oo - Codice o2

Codice oo – Codice o2

Controlli manuali della portata per regolazioni fini e veloci inversioni.

Ideale per:

- macchine semoventi
- nastri
- pompe volumetriche
- cilindri idraulici

Codice 20 - Codice 67 - Codice 37

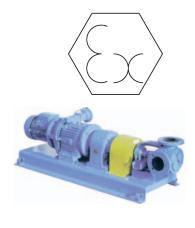
Codice 20 - Codice 67

Sistemi per controlli remoti della portata con pulsantiera o PLC.

Codice 37

Controllo continuo e proporzionale della portata per regolazioni fini con elettronica dedicata VAR-SPE.

Codice oo/3


Codice oo/3

Sistema di controllo portata "Load sensing".

Ideale per:

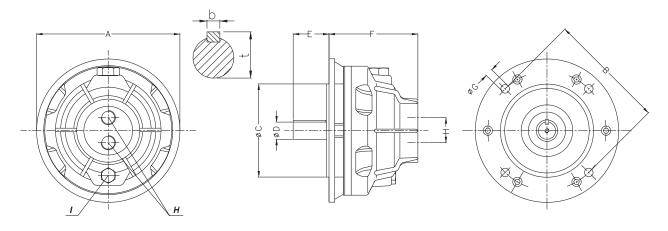
- linee avvolgimento
- ascensori idraulici

Codice 52

Codice 52

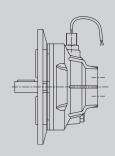
Controllo remoto della portata per regolazioni fini con segnale pneumatico. Per ambienti antideflagranti del settore chimico, petrolifero, estrattivo.

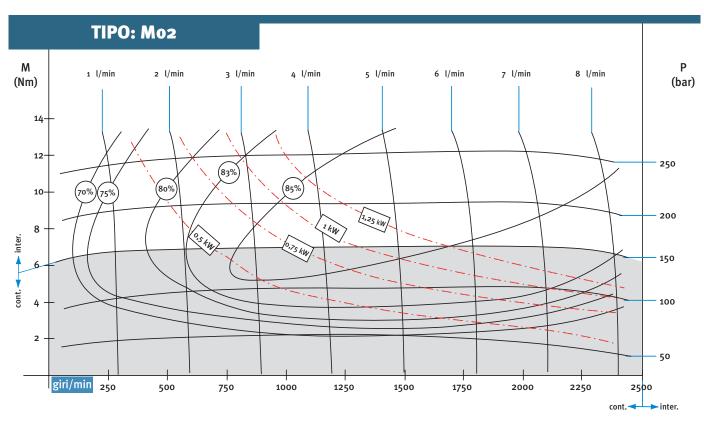
Ideale per:


- pompe volumetriche
- mescolatori
- filtri rotanti

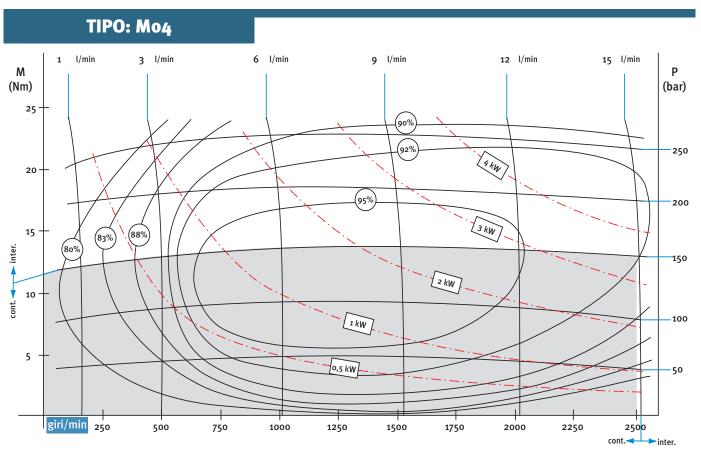
	TIPO	1		Mo2	Mo4	Mo8	M10			
Cilindrata		С	cm³/giro	3,3	5,9	12,3	19,9			
Portata nominale (1	1500 giri/min)	Qnom	l/min	5,0	9,0	18,8	30,4			
D	continua	p nom	bar	bar		150*				
Pressione max.	picco	p picco	bar		300**					
	min	V min	giri/min		20					
Velocità	max cont.	V max	giri/min	2500		2000				
	picco	V picco	giri/min	4000		3000	2500			
Coppia nomin.	cont (Pnom)	Mnom	N⋅m	6,7	12,0	24,9	40,3			
Coppia spunto	9/	coppia teor	ica		80	-90				
Peso		W	Kg	3	4,4	7,3	12,2			
Massima tempera	Т	°C	8o°C							
Viscosità ottimale				20-35 mm²/s [cSt] a 40°C						
Filtraggio				NAS 1638, lev 9 ISO/DIN 4406, lev 18/15						

^{*} In circuito chiuso senza sistema di raffreddamento

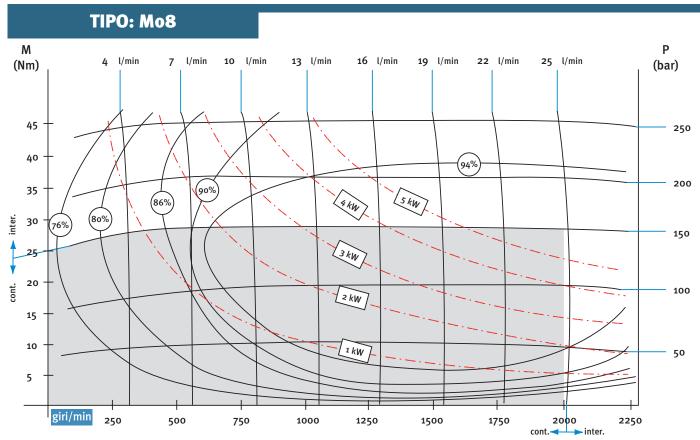

DIMENSIONI MOTORI IDRAULICI


	Dimensioni motori idraulici con flangia IEC (mm)											
	А	В	С	D	E	F	G	H (GAS)	I (GAS)	b	t	FLANGIA IEC
Mo2	160	130	110	14	30	96,7	9,5	3/8	1/8	5	16	71
Mo4	200	165	130	19	40	107	11,5	3/8	1/4	6	21,5	80
Mo8	200	165	130	24	50	124	11,5	1/2	1/4	8	27	90
M10	250	215	180	28	60	140,5	14	3/4	3/8	8	31	110-112

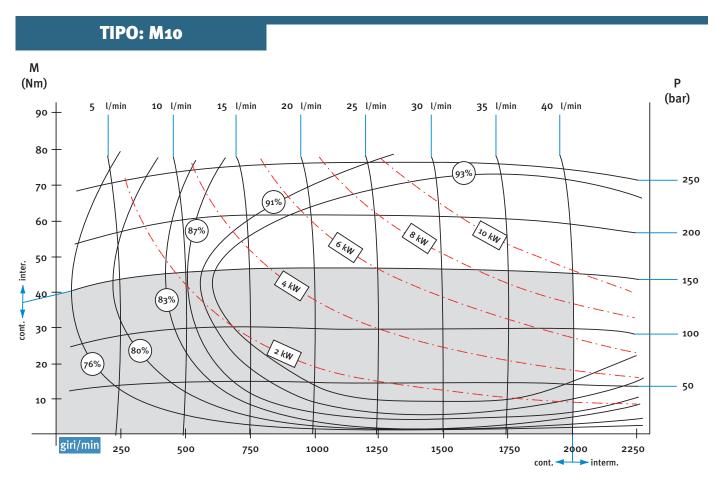
Dispositivi


MOTORE IDRAULICO: sensore velocità codice 8.

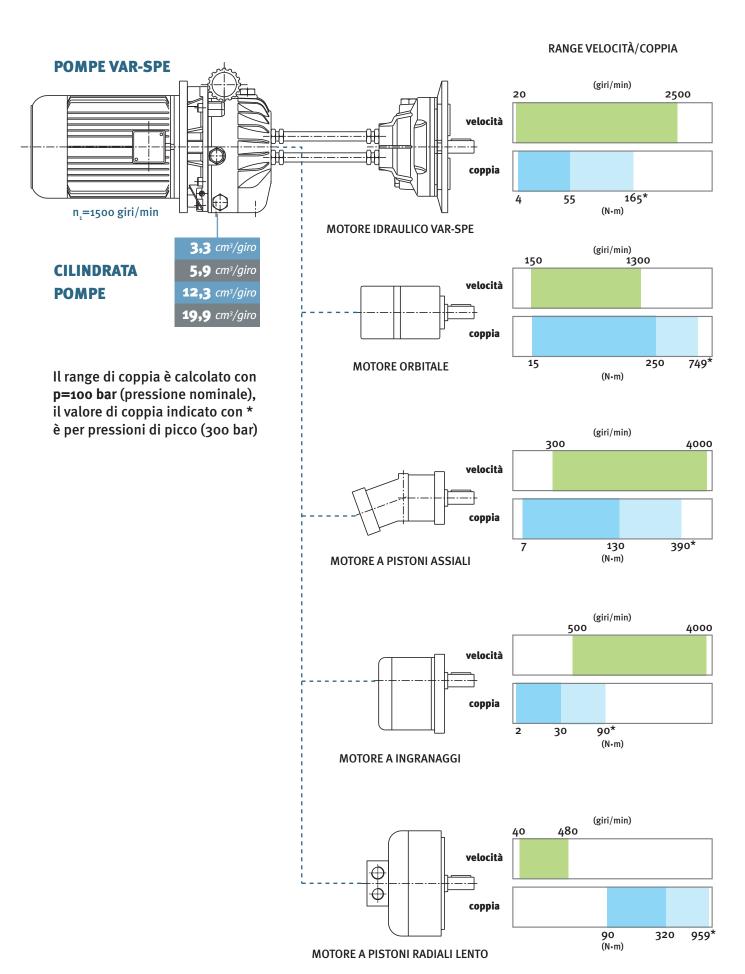
^{**} Per brevi periodi di tempo (non superare 2% per minuto)



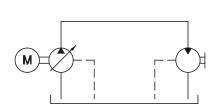
Il motore non deve superare contemporaneamente 150 bar di pressione e 8,4 l/min di portata.

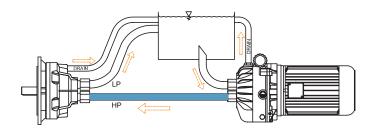


Il motore non deve superare contemporaneamente 150 bar di pressione e 15 l/min di portata.

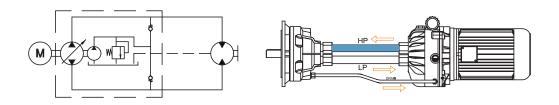


Il motore non deve superare contemporaneamente 150 bar di pressione e 25 l/min di portata.




Il motore non deve superare contemporaneamente 150 bar di pressione e 40 l/min di portata.

POMPE+MOTORI



POMPE+MOTORI

CIRCUITO APERTO

CIRCUITO CHIUSO

CIRCUITO APERTO

La pompa va montata sotto il serbatoio (con battente).

PRIMA PARTENZA

Prima di partire, precaricare di olio i componenti del sistema: pompa, motore idraulico, serbatoio, ecc., con olio nuovo e filtrato. Far lavorare il circuito per pochi secondi e poi controllare il livello dell'olio della pompa. Quindi far girare la pompa a bassa pressione finchè il sistema idraulico si è liberato dall'aria.

ROTAZIONE INGRESSO POMPA

La direzione di rotazione in ingresso alla pompa è indicata dalla freccia nella flangia di entrata. Il normale senso di rotazione è orario. Per usare entrambi i sensi di rotazione è necessario utilizzare il dispositivo codice D.

TIPO DI OLIO

Usare un olio idraulico minerale di buona qualità: ad es. ATF Dexron, Esso Univis, Shell Tellus, Mobil DTE. La scelta dell'olio va fatta considerando la temperatura di lavoro.

CIRCUITO APERTO

Temperatura olio 40°C: olio ISO VG22 o ISO VG32 Temperatura olio 50°C: olio ISO VG32 o ISO VG46 Temperatura olio 60°C: olio ISO VG46 o ISO VG68

CIRCUITO CHIUSO

Temperatura olio 70°C: olio ISO VG68 Temperatura olio 80°C: olio ISO VG100

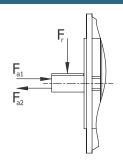
Campo viscosità: ottimale 15-40 cSt; min. 10 cSt; max 100 cSt.

MANUTENZIONE

Cambiare l'olio dopo le prime 200 ore di lavoro e poi ogni 2000 ore. Tali intervalli dovrebbero essere ridotti quando il sistema lavora con carichi pesanti o con condizioni ambientali difficili.

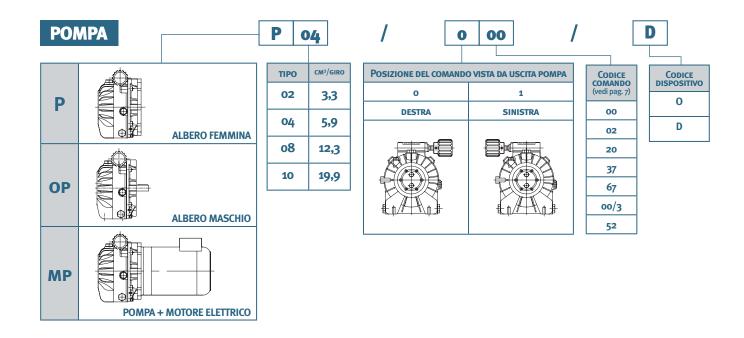
POSIZIONE DI MONTAGGIO

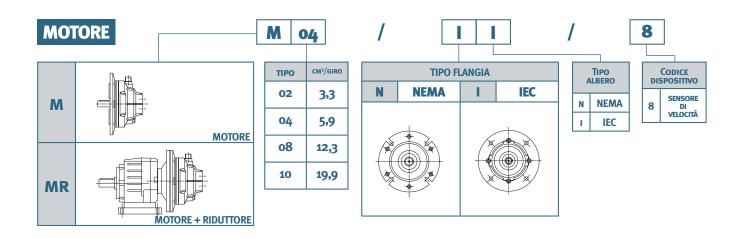
La posizione di montaggio è universale sia per motori che per pompe, ma per le pompe va indicato in fase d'ordine.


DRENAGGIO DEI MOTORI IDRAULICI

Il drenaggio va connesso al serbatoio per limitare la pressione nella cassa del motore idraulico (massima pressione in cassa 1,5 bar).

POMPA E MOTORE - CARICHI RADIALI E ASSIALI


I carichi radiali e assiali ammessi sono riportati nelle seguenti tabelle:


CARICHI RADIALI (N)								
02	04	08	10					
380	500	800	1670					

CARICHI ASSIALI (N)							
02	02 04 08 10						
1700	2200	3400	4700				

COME ORDINARE

FORMULE UTILI

Pompe: calcolo delle grandezze nominali

Portata generata
$$Q = \frac{c \cdot n}{1000} \cdot \eta_v$$
 [l/min]

Coppia assorbita $M = 1,59 \cdot \frac{\Delta p \cdot c}{100 \cdot \eta_m}$ [N · m]

Potenza assorbita $P = \frac{Q \cdot \Delta p}{600 \cdot \eta_t}$ [kW]

Motori: calcolo delle grandezze nominali

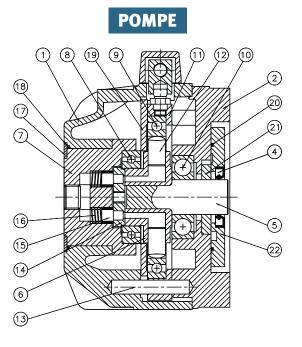
Portata in ingresso
$$Q = \frac{c \cdot n}{1000 \cdot \eta_{v}}$$
 [l/min]

Coppia fornita $M = 1,59 \cdot \frac{\Delta p \cdot c}{100} \cdot \eta_{m}$ [N·m]

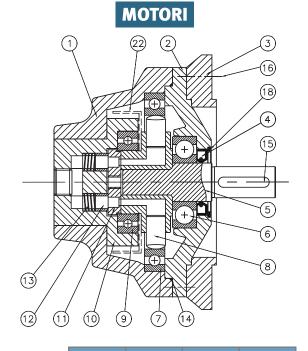
Potenza fornita $P = \frac{Q \cdot \Delta p}{600} \cdot \eta_{t}$ [kW]

Velocità uscita $n = \frac{Q \cdot 1000}{c} \eta_{v}$ [giri/min]

Q = portata (l/min)


 $M = coppia (N \cdot m)$

c = cilindrata (cm³/giro)


 $\Delta p = differenza di pressione (bar)$

 $n = velocità albero (giri/min) \eta_v = rendimento volumetrico$

 $\eta_{m} = \text{rendimento idromeccanico} \\
\eta_{t} = \text{rendimento totale}$

	P02	Po4	Po8	P10
Rif. 4	BA	BA	BA	BA
	25x35x7	30x42x7	40x52x7	42x56x7

	Mo2	Мо4	Mo8	M10
Rif. 4	BA B SL	BA B SL	BA B SL	BA B SL
	20x35x6	25x42x7	30x52x7	45x65x10

ALTRI PRODOTTI VAR-SPE

VARIATORI A2-A12 0,37 KW - 4 KW

VARIATORI 15-17B 4 KW - 22 KW

LA SOLUZIONE IDEALE PER APPLICAZIONI PICCOLE/LEGGERE

